jeae journal
EFFECT OF PROCESSING TECHNIQUES ON FUEL BRIQUETTES
Requires Subscription PDF

Keywords

Densification
Fuel
Technique
Pressure
Briquettes

Abstract

Densification of agroforestry biomass for energy production has positively impacted the energy sector across the globe. Wood fuel consumption has led to deforestation and degradation. Recently, much has been discussed on biomass briquetting technologies and their influence. However, knowledge about appropriate technique for briquetting to achieve high-quality briquettes is yet to be explored. Thus, efforts were made to critically evaluate briquetting techniques on briquettes’ combustion performance properties. The Water Boiling Test was used in the determination of various parameters. High (screw press); and low (drum agglomerator and hand making) pressure briquetting techniques were distinctly different in ignition time (minutes), time to boil (minutes) burning rate (g/min), specific fuel consumption (g/ml) and power output (kW) values as (1.3,1.0,0.9; 14, 12, 11: 0.8, 1.1, 1.3; 0.11, 0.13, 0.15; and 1.8, 1.4, 0.75). Briquetting technology, based on pressure, is thus a factor that influence performance properties of briquettes. This knowledge is therefore useful when converting waste biomass into briquettes as alternate energy source towards realization of Sustainable Development Goal #7 on affordable and clean energy.

https://doi.org/10.37017/jeae-volume10-no1.2024-3
Requires Subscription PDF

References

Abdulkareem, S., Hakeem, B. A., Ahmed, I. I., Ajiboye, T. K., Adebisi, J. A., & Yahaya, T. (2018). Combustion Characteristics of Bio-Degradable Biomass Briquettes. Journal of Engineering Science and Technology, 13(9), 2779-2791.

Akpenpuun, T. D., Salau, R. A., Adebayo, A. O., Adebayo, O. M., Salawu, J., & Durotoye, M. (2020). Physical and combustible properties of briquettes produced from a combination of groundnut shell, rice husk, sawdust and wastepaper using starch as a binder. Journal of Applied Sciences and Environmental Management, 24(1), 171-177. https://doi.org/10.4314/jasem.v24i1.25

Anggraeni, S., Hofifah, S. N., & Nandiyanto, A. B. D. (2021). Effects of Particle Size and Composition of Cassava Peels and Rice Husk on the Briquette Performance. Journal of Engineering Science and Technology, 16(1), 527-542.

Bello, R. S., & Onilude, M. A. (2020). Physico-mechanical Characteristics of High-Density Briquettes produced from Composite Sawdust. Journal of Applied Sciences and Environmental Management, 24(5), 779–787. https://doi.org/10.4314/jasem.v24i5.8

Bembenek, M., Krawczyk, J., & Pańcikiewicz, K. (2020). The Wear on Roller Press Rollers Made of 20Cr4/1.7027 Steel under Conditions of Copper Concentrate Briquetting. Materials, 13(24), 1-17. https://doi.org/10.3390/ma13245782

Berrueta, V. M., Edwards, R. D., & Masera, O. R. (2008). Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renewable Energy, 33(5), 859–870. https://doi.org/10.1016/j.renene.2007.04.016

Davies, R. (2013). Ignition and Burning Rate of Water Hyacinth Briquettes. Journal of Scientific Research and Reports, 2(1), 111–120. https://doi.org/10.9734/JSRR/2013/1964

Jamradloedluk, J., & Wiriyaumpaiwong, S. (2007). Production and Characterization of Rice Husk Based Charcoal Briquettes. KKU Engineering Journal, 34(4), 391-398.

Jiao, W., Tabil, L. G., Xin, M., Song, Y., Chi, B., Wu, L., Chen, T., Meng, J., & Bai, X. (2020). Optimization of process variables for briquetting of biochar from corn stover. BioResources, 15(3), 6811–6825. https://doi.org/10.15376/biores.15.3.6811-6825

Kabok, A. P., Nyaanga, D. M., Mbugua, J. M., & Eppinga, R. (2018). Effect of Shapes, Binders and Densities of Faecal Matter—Sawdust Briquettes on Ignition and Burning Times. Journal of Petroleum & Environmental Biotechnology, 9(2), 1-5. https://doi.org/10.4172/2157-7463.1000370

Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020). Production and Characterization of Hybrid Briquettes from Corncobs and Oil Palm Trunk Bark under a Low-Pressure Densification Technique. Sustainability, 12(6), 1-16. https://doi.org/10.3390/su12062468

Navalta, C. J. L. G., Banaag, K. G. C., Raboy, V. A. O., Go, A. W., Cabatingan, L. K., & Ju, Y.-H. (2020). Solid fuel from Co-briquetting of sugarcane bagasse and rice bran. Renewable Energy, 147, 1941–1958. https://doi.org/10.1016/j.renene.2019.09.129

Ndindeng, S. A., Mbassi, J. E. G., Mbacham, W. F., Manful, J., Graham-Acquaah, S., Moreira, J., Dossou, J., & Futakuchi, K. (2015). Quality optimization in briquettes made from rice milling by-products. Energy for Sustainable Development, 29, 24–31. https://doi.org/10.1016/j.esd.2015.09.003

Nwabue, F. I., Unah, U., & Itumoh, E. J. (2017). Production and characterization of smokeless bio-coal briquettes incorporating plastic waste materials. Environmental Technology & Innovation, 8, 233–245. https://doi.org/10.1016/j.eti.2017.02.008

Onuegbu, T. U., Ekpunobi, U. E., Ogbu, I. M., Ekeoma, M. O., & Obumselu, F. O. (2011). Comparative Studies of Ignition Time and Water Boiling Test of Coal and Biomass Briquettes Blend. International Journal of Recent Research and Applied Studies, 7(2), 153-159.

Onukak, I., Mohammed-Dabo, I., Ameh, A., Okoduwa, S., & Fasanya, O. (2017). Production and Characterization of Biomass Briquettes from Tannery Solid Waste. Recycling, 2(4), 1-19. https://doi.org/10.3390/recycling2040017

Okwara, W.M., Nyaanga, D.M., Kabok, P., & Nyaanga, J. (2022a). Effect of Process Techniques on Three Feedstocks Mix on Briquette Performance Properties. Journal of Energy, Environmental & Chemical Engineering.7(1), 1-8.

Okwara, W. M., Nyaanga, D. M., & Kabok, P. (2022b). Effect of Three Feedstocks Mix on Briquettes’ Physical and Combustion Properties. Journal of Engineering in Agriculture and the Environment. 8(2), 73-87.

Osei Bonsu, B., Takase, M., & Mantey, J. (2020). Preparation of charcoal briquette from palm kernel shells: Case study in Ghana. Heliyon, 6(10), 1-8. https://doi.org/10.1016/j.heliyon.2020.e05266

Prasityousil, J., & Muenjina, A. (2013). Properties of Solid Fuel Briquettes Produced from Rejected Material of Municipal Waste Composting. Procedia Environmental Sciences, 17, 603–610. https://doi.org/10.1016/j.proenv.2013.02.076

Rahaman, S. A., & Salam, P. A. (2017). Characterization of cold densified rice straw briquettes and the potential use of sawdust as binder. Fuel Processing Technology, 158, 9–19. https://doi.org/10.1016/j.fuproc.2016.12.008

Sawadogo, M. (2018). Cleaner production in Burkina Faso: Case study of fuel briquettes made from cashew industry waste. Journal of Cleaner Production, 1-23.

Singla, M., Singh, M., & Dogra, R. (2020). Experimental investigation of imbert downdraft gasifier using rice straw briquettes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–11. https://doi.org/10.1080/15567036.2020.1771478

Soares, L. D. S., Maia, A. A. D., Moris, V. A. S., & De Paiva, J. M. F. (2020). Study of the Effects of the Addition of Coffee Grounds and Sugarcane Fibers on Thermal and Mechanical Properties of Briquettes. Journal of Natural Fibers, 17(10), 1430–1438. https://doi.org/10.1080/15440478.2019.1578325

Wilaipon, P. (2009). The Effects of Briquetting Pressure on Banana-Peel Briquette and the Banana Waste in Northern Thailand. American Journal of Applied Sciences, 6(1), 167-171.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Wilberforce Okwara, Baqe Doti, Mercy Mboya, Daudi Nyaanga