jeae journal
PRODUCTION OF BIO-COMPOSITE POLYMERS WITH RICE AND COFFEE HUSKS AS REINFORCING FILLERS USING A LOW-COST COMPRESSION MOLDING MACHINE

Abstract

A compression molding machine was developed to produce bio-composite polymers using rice and coffee
husks as reinforcing filler (5% weight) with high density polyethylene (95% weight) as the base polymer.
Rice and coffee husks are typically disposed by open burning in fields. Their use as reinforcing fillers
therefore reduces on the negative impacts of their disposal. The developed compression molding machine
was constructed using mainly mild steel and stainless steel. It consisted of heating chamber, mold base,
compression shaft and observation window. A temperature controller was incorporated to regulate the
temperature in the heating chamber. Elongation, tensile strength and water absorption tests were carried out
on the developed bio-composite polymers. Results indicated that inclusion of rice husks (5%) reduced the
tensile strength and percentage elongation of the developed bio-composite polymer. Similar results were
observed with coffee husk. Highest water absorption rates of 8% were observed for bio-composite polymers
developed with Arabica coffee husks.

https://doi.org/10.37017/jeae-volume5-no1.2019-5
Requires Subscription PDF

References

American Society for Testing and Materials. 1998. ASTM. ASTM D570-98: standard test method for water absorption of plastics.

American Society for Testing and Materials. 2003.

ASTM. ASTM D638-03: standard test method for tensile properties of plastics.

Angelini, L.G., A. Lazzeri, G. Levita, D. Fontanelli, C. Bozzi. 2000. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials : agronomical aspects, morphology and mechanical properties.

Ind Crop Prod, 11:145-161.

Beg, M.D.H and K.L. Pickering. 2008. Reprocessing of wood fibre reinforced polypropylene composites. Part II: hydrothermal ageing and its effects.

Compos: Part A - Applied Science Manufacturing; 39:1565-1571.

Bevilaqua, D.B., M.K.D. Rambo, T.M. Rizzetti, A.L. Cardoso and A.F. Martins. 2013. Cleaner production: levulinic acid from rice husks. Journal of Cleaner Production. 47; 96-101. Bledzki, A.K. and J. Gassan. 1999. Composites reinforced with cellulose based fibers. Prog Polymer Science. 24:221-274.

Borghesi, D.C., M.F. Molina, M.A. Guerra and M.G.N Campos. 2016. Biodegradation Study of a Novel Poly-Caprolactone-Coffee Husk Composite Film. Materials Research, (AHEAD).

Bullions, T.A., D. Hoffman, R.A. Gillespie, J. Price-

O’Brien and A.C. Loos. 2006. Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Compos Sci Technol, 66:102-114.

Campos, A., G.H.D. Tonoli, J.M. Marconcini, L.H.C. Mattoso, A. Klamczynski, K.S.

Gregorski. 2013. TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. Journal of Polymers and of Environment, 21(1):1-7.

Daniel G., V.H. Suong and W.T. Stephen. 2003. Composite materials design and applications. CRC Press Boca Raton.

Espindola, G.A., R.R. Fuentes, H.A..L Martinez, V.M. Castano and S.C. Velasco.2014. Structural characterization of silica particles extracted from grass stenotaphrum secundatum:

Biotransformation via Annelids. Advances in Materials Science and Engineering.

Favaro, S.L., M.S. Lopes, A.G.V. Alberto Neto, R, Rogério de Santana and E. Radovanovic.2010. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Composites: Part A 41.; 154-160.

Fuad, M.Y.A., R. Shukor, Z.A.M. Ishak and A.K.M. Omar. 1994. Plastic Rub. Comp. Process.; 21: 225.

Gacitua W.E, A. Ballerini and J. Zhang. 2005. Polymer Nanocomposites: Synthetic and Natural

Fillers A Review. Maderas. Ciencia Y Tecnología. 7(3): 159-178.

Garcia D., J. Lopez, R, Balart, R.A. Ruseckaite and P.M. Stefani. 1998. Composites based on sintering rice husk-waste tire rubber mixtures. Mater Des

; 28: 2234-2238.George J, Sreekala MS, Thomas S, Journal of Reinforcing Plastic Comp. 17: 651.

Government of Uganda (GoU), 2007. Renewable Energy Policy, Kampala, Uganda.

Hardinnawird K and I.A. Sitirabiatull. 2012. Effect of Rice Husks as Filler in Polymer Matrix

Composites. Journal of Mechanical Engineering and Sciences (JMES) 2: 181-6.

Hattotuwa, G.B., H.I. Premalal and A. Baharin. 2002. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing. 21 (7) 833-839.

Ismail, H and S.M. Nasir. 2001. Polymer Testing. 20:

Josepn, K., S. Thomas and C. Pavithran. 1996.

Polymer. 37: 5139

Kim, H.S, H.S. Yang, H.J. Kim and H.J. Park. 2004. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites.

Journal of Thermal Analysis and Calorimetry. 76(2):395-404.

Lubwama, M and V.A Yiga. 2017. Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renewable Energy.

:532-542.

Ministry of Agriculture Animal Industry and Fisheries (MAAIF) 2009. Uganda National Rice

Development Strategy 2009-2018, Kampala, Uganda.

Ministry of Agriculture Animal Industry and Fisheries (MAAIF) & Uganda Coffee

Development Authority 2015. UCDA Database. Kampala, Uganda

Maya, J.J and T. Sabu. 2008. Biofibers and biocomposites. Carbohydrate polymers. 71: 343364.

Mohanty, A.K., M. Misra and G. Hinrichsen. 2000. Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Matererials Engineering. 276:1-24.

Mohanty, A.K., M. Misra and L.T. Drzal. 2002. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Polymer Environment. 10:19-26.

Narayan, R. 2006. Biobased and biodegradable polymer materials: Principles, concepts and technology exemplars. In: World polymer congress and 41st International Symposium on macromolecules, MACRO-2006. 2006 [in CDROM; paper no. 2103].

Oksman, K and C. Clemons. 1997. Journal of

Applied Polymer Science. 67: 1503.

Panthapulakkal, S., S. Law and M. Sain. 2005. Enhancement of processability of rice husk filled high-density polyethylene composite profiles.

Thermoplast Compos . 18: 445-458.

Pothan, L.A., S. Thomas and N.R. Neelakantan.

Journal of Reinforcing Plastic Comp. 16: 744.

Premalal, H.G.B., H. Ismail and A. Baharin. 2002. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing. 21(7): 833-839.

Pritchard, G., in: Pritchard G. (Ed.). 1998. Plastics Additives, Chapman and Hall, London. 241.

Raju, G.U., S. Kumarappa and V.N. Gaitonde. 2012. Mechanical and Physical Characterization of Agricultural Waste Reinforced Polymer

Composites. J. Mater. Environ. Sci. 3(5): 907-916.

Re, L.G., M. Morreale, R. Scaffaro and F.P. La Mantia.2013. Biodegradation paths of Mater-Bi (R)/kenaf biodegradable composites. Applied Polymer Science. 129(6): 3198-3208.

Rozman, H.D., B.K. Kon, A. Abusamah, R.N. Kumar and Z.A.M. Ishak.1998. Journal of

Applied Polymer Science. 69.

Satyanarayana, K.G., G.C.C. Arizaga and F. Wypych 2009. Biodegradable composites based on lignocellulosic fibers-An overview. Progress in Polymer Science. 34: 982-1021.

Sgriccia, N and M.C. Hawley. 2007. Thermal, morphological, and electrical characterization of microwave processed natural fiber composites.

Compos Science Technology. 67:1986-1991.

Sgriccia, N., M.C., Hawley and M. Misra. 2008. Characterization of natural fiber surfaces and natural fiber composites. Compos: Part A – Applied Science Manufacturing. 39: 1632-1637.

Sharma, N., L.P. Chang, Y.L. Chu, H. Ismail, U.S. Ishiaku and Z.A.M. Ishak. 2001. Polymer

Degradation Stab. 71: 381.

Tsou, C.H., W.S. Hung, C.S. Wu, J.C. Chen, C.Y. Huang, S.H. Chiu, C.Y. Tsou, S.M. Lin, C.K. Chu and C.C. Hu. 2014. New composition of maleic-anhydride-grafted poly (Lactic Acid)/rice husk with methylenediphenyl diisocyanate. Material Science. 20: 446-451.

Tsou C.Y., C.L. Wu, C.H. Tsou, S.H. Chiu, M.C.

Suen and W.S. Hung. 2015. Biodegradable Composition of Poly (lactic acid) from Renewable Wood Flour. Polymer Science. Series B. 57: 473-480.

Uganda Bureau of Statistics (UBOS) 2010. Uganda census of agriculture 2008/2009: crop area and production report, vol. IV. Kampala Uganda.

Uganda Bureau of Statistics (UBOS) 2009.

Statistical Abstract. Kampala Uganda.

USDA, 2012. United States Department of Agriculture Foreign Agricultural Service. Coffee: World Markets and Trade.

Yang, H.S., H.J. Kim, H.J. Park, B.J. Lee and T.S. Hwang. 2007. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Composite Structures. 77:45-55.

Yang, H.S.; M.P. Wolcott, H.S. Kim and H.J. Kim.2005. Thermal Properties of Lignocellulosic Filler-Thermoplastic Polymer Bio- Composites.

Journal of Thermal Analysis and Calorimetry. 82: 157-160.

Yank, A.; M. Ngadi and R. Kok. 2016. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications.

Biomass and Bioenergy.84: 22-30.

Zhao, Q.; B. Zhang, H.; Quan, R.C.M.; Yam, R.K.K. Yuen and R.K.Y. Li. 2009. Flame retardancy of rice husk-filled high-density polyethylene Eco composites. Composites Science and Technology. 69: 2675-2681.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.